Thursday 6 July 2017

Algoritmo Médio Em Mudança C


Estou tentando calcular a média móvel de um sinal. O valor do sinal (um duplo) é atualizado em horários aleatórios. Estou procurando uma maneira eficiente de calcular sua média ponderada no tempo ao longo de uma janela de tempo, em tempo real. Eu poderia fazê-lo sozinho, mas é mais desafiante do que eu pensava. A maioria dos recursos que encontrei através da internet calculam a média móvel do sinal periódico, mas as atualizações das minas em tempo aleatório. Alguém conhece bons recursos para isso. O truque é o seguinte: você obtém atualizações em horários aleatórios através de atualização vazia (tempo int, valor flutuante). No entanto, você também precisa acompanhar quando uma atualização cai na janela de tempo, de modo que você configure um alarme chamado no momento N, que remove a atualização anterior de ser novamente considerado novamente na computação. Se isso acontecer em tempo real, você pode solicitar o sistema operacional para fazer uma chamada para um método void dropoffoldestupdate (int time) para ser chamado no tempo N Se esta é uma simulação, você não pode obter ajuda do sistema operacional e você precisa Faça-o manualmente. Em uma simulação, você chamaria métodos com o tempo fornecido como um argumento (que não se correlaciona com o tempo real). No entanto, uma suposição razoável é que as chamadas são garantidas de tal forma que os argumentos de tempo estão aumentando. Neste caso, você precisa manter uma lista ordenada de valores de hora do alarme e, para cada atualização e leitura, você verifica se o argumento de tempo é maior que o cabeçalho da lista de alarmes. Embora seja maior, você faz o processamento relacionado ao alarme (abandone a atualização mais antiga), remova a cabeça e verifique novamente até que todos os alarmes anteriores ao tempo fornecido sejam processados. Em seguida, faça a chamada de atualização. Tenho até agora assumido que é óbvio o que você faria para a computação real, mas vou elaborar apenas no caso. Eu suponho que você tenha um método flutuante lido (int time) que você usa para ler os valores. O objetivo é tornar este chamado tão eficiente quanto possível. Então você não calcula a média móvel sempre que o método de leitura é chamado. Em vez disso, você precomputa o valor a partir da última atualização ou o último alarme, e ajuste esse valor por algumas operações de ponto flutuante para explicar a passagem do tempo desde a última atualização. (I. E. Um número constante de operações, exceto para talvez processar uma lista de alarmes empilhados). Esperemos que isso seja claro - este deve ser um algoritmo bastante simples e bastante eficiente. Otimização adicional. Um dos problemas restantes é se um grande número de atualizações acontecerem dentro da janela de tempo, então há muito tempo para o qual não há leituras nem atualizações e, em seguida, uma leitura ou atualização vem junto. Nesse caso, o algoritmo acima será ineficiente ao atualizar de forma incremental o valor de cada uma das atualizações que está caindo. Isso não é necessário, porque nós só nos preocupamos com a última atualização além da janela de tempo, então, se houver uma maneira de descartar todas as atualizações mais antigas, isso ajudaria. Para fazer isso, podemos modificar o algoritmo para fazer uma pesquisa binária de atualizações para encontrar a atualização mais recente antes da janela de tempo. Se houver relativamente poucas atualizações que precisam ser descartadas, pode-se incrementar o valor para cada atualização descartada. Mas se houver muitas atualizações que precisam ser descartadas, pode-se recalcular o valor a partir do zero depois de deixar as atualizações antigas. Apêndice em Computação Incremental: Devo esclarecer o que quero dizer pela computação incremental acima na frase ajustar esse valor por um par de operações de ponto flutuante para explicar a passagem do tempo desde a última atualização. Computação inicial não incremental: então iterar sobre os atuais relevantes em ordem crescente de tempo: tempo de exibição de motionaverage (sum tempo de atraso). Agora, se exatamente uma atualização cai fora da janela, mas nenhuma nova atualização chegou, ajuste a soma como: (note que é priorupdate, que tem seu timestamp modificado para iniciar o início da última janela). E se exatamente uma atualização entrar na janela, mas nenhuma nova atualização cai, ajuste a soma como: Como deve ser óbvio, este é um esboço áspero, mas espero que mostre como você pode manter a média de que é O (1) operações por atualização Em uma base amortizada. Mas observe uma otimização adicional no parágrafo anterior. Observe também as questões de estabilidade aludidas em uma resposta mais antiga, o que significa que os erros de ponto flutuante podem se acumulam em um grande número dessas operações incrementais, de modo que existe uma divergência com o resultado da computação total que é significativa para o aplicativo. Se uma aproximação é OK e há um tempo mínimo entre amostras, você pode tentar super-amostragem. Tenha uma matriz que represente intervalos de tempo uniformemente espaçados que sejam menores do que o mínimo, e em cada período de tempo armazene a última amostra que foi recebida. Quanto menor o intervalo, mais próxima será a média para o valor verdadeiro. O período não deve ser superior a metade do mínimo ou há uma chance de perder uma amostra. Respondeu 15 de dezembro às 18:12 respondido 15 de dezembro às 22:38 Obrigado pela resposta. Uma melhoria que seria necessária para que o quotcachequot fosse o valor da média total, de modo que não estivemos todos os dias. Além disso, pode ser um ponto menor, mas não seria mais eficiente usar um deque ou uma lista para armazenar o valor, já que assumimos que a atualização virá na ordem correta. A inserção seria mais rápida do que no mapa. Ndash Arthur 16 de dezembro 11 às 8:55 Sim, você pode armazenar em cache o valor da soma. Submeta os valores das amostras que você apaga, adicione os valores das amostras que você inseriu. Além disso, sim, um dequeltpairltSample, Dategtgt pode ser mais eficiente. Eu escolhi o mapa para a legibilidade e a facilidade de invocar o mapa :: upperbound. Como sempre, escreva o código correto primeiro, depois faça o perfil e mude as mudanças incrementais. Ndash Rob Dec 16 11 at 15:00 Nota: Aparentemente, esta não é a maneira de abordar isso. Deixando-o aqui para referência sobre o que está errado com essa abordagem. Verifique os comentários. ATUALIZADO - com base no comentário Olis. Não tenho certeza sobre a instabilidade de que ele está falando. Use um mapa ordenado de tempos de chegada contra valores. Após a chegada de um valor, adicione a hora de chegada ao mapa ordenado juntamente com seu valor e atualize a média móvel. Advertindo isso é pseudo-código: aí. Não totalmente elaborado, mas você consegue a ideia. Coisas a serem observadas. Como eu disse, o acima é pseudo-código. Você precisará escolher um mapa apropriado. Não remova os pares conforme você itera, pois você invalidará o iterador e terá que começar de novo. Veja o comentário Olis abaixo também. Respondeu 15 de dezembro às 12:22 Isso não funciona: ele não leva em consideração a proporção do comprimento de janela de cada valor para. Além disso, essa abordagem de adicionar e depois subtrair é apenas estável para tipos inteiros, não flutuadores. Ndash Oliver Charlesworth 15 de dezembro às 12:29 OliCharlesworth - desculpe, perdi alguns pontos-chave na descrição (dupla e ponderada no tempo). Vou atualizar. Obrigado. Ndash Dennis 15 de dezembro 11 às 12:33 A ponderação do tempo é mais um problema. Mas isso não é o que eu estou falando. Eu estava me referindo ao fato de que quando um novo valor primeiro entra na janela de tempo, sua contribuição para a média é mínima. Sua contribuição continua a aumentar até um novo valor entrar. Ndash Oliver Charlesworth 15 de dezembro 11 às 12: 35Como outros já mencionaram, você deve considerar um filtro IIR (resposta de impulso infinito) em vez do filtro FIR (filtro de resposta finito) que você está usando agora. Há mais, mas à primeira vista os filtros FIR são implementados como convoluções explícitas e filtros IIR com equações. O filtro IIR particular que eu uso muito em microcontroladores é um filtro passa-baixa de um único pólo. Este é o equivalente digital de um simples filtro analógico R-C. Para a maioria dos aplicativos, estes terão melhores características do que o filtro de caixa que você está usando. A maioria dos usos de um filtro de caixa que eu encontrei são resultado de alguém que não presta atenção na classe de processamento de sinal digital, não como resultado de precisar de suas características particulares. Se você quiser apenas atenuar as altas freqüências que você conhece são ruim, um filtro passa-baixa de um único pólo é melhor. A melhor maneira de implementar um digitalmente em um microcontrolador é geralmente: FILT lt-- FILT FF (NEW-FILT) FILT é um pedaço de estado persistente. Esta é a única variável persistente que você precisa para calcular este filtro. NOVO é o novo valor que o filtro está sendo atualizado com esta iteração. FF é a fração do filtro. Que ajusta o peso do filtro. Olhe para este algoritmo e veja que para FF 0 o filtro é infinitamente pesado, já que a saída nunca muda. Para FF 1, realmente não há nenhum filtro, já que a saída apenas segue a entrada. Os valores úteis estão no meio. Em sistemas pequenos, você escolhe FF para ser 12 N, de modo que o multiplica por FF pode ser realizado como uma mudança direta por N bits. Por exemplo, FF pode ser 116 e multiplicar por FF, portanto, uma mudança direta de 4 bits. Caso contrário, este filtro precisa apenas de uma subtração e de um som, embora os números geralmente sejam mais amplos do que o valor de entrada (mais na precisão numérica em uma seção separada abaixo). Normalmente, tomo as leituras do AD significativamente mais rápidas do que são necessárias e aplico dois desses filtros em cascata. Este é o equivalente digital de dois filtros R-C em série e atenua 12 dBoctave acima da frequência de rolagem. No entanto, para as leituras de AD, geralmente é mais relevante olhar para o filtro no domínio do tempo, considerando sua resposta passo a passo. Isso indica o quão rápido o sistema verá uma mudança quando a coisa que você está medindo muda. Para facilitar a concepção desses filtros (o que significa apenas escolher FF e decidir quantos deles entrar em cascata), uso o meu programa FILTBITS. Você especifica o número de bits de mudança para cada FF na série de filtros em cascata, e ele calcula a resposta de passo e outros valores. Na verdade, eu costumo executar isso através do meu script wrapper PLOTFILT. Isso executa FILTBITS, que faz um arquivo CSV e, em seguida, traça o arquivo CSV. Por exemplo, aqui é o resultado do PLOTFILT 4 4: os dois parâmetros para PLOTFILT significam que haverá dois filtros em cascata do tipo descrito acima. Os valores de 4 indicam o número de bits de mudança para realizar o multiplicar pelo FF. Os dois valores FF são, portanto, 116 neste caso. O rastreamento vermelho é a resposta do passo da unidade, e é o principal aspecto a ser observado. Por exemplo, isso indica que, se a entrada muda instantaneamente, a saída do filtro combinado será fixada em 90 do novo valor em 60 iterações. Se você se preocupa com 95 horas de colonização, então você precisa esperar cerca de 73 iterações e por 50 horas de reposição apenas 26 iterações. O traço verde mostra a saída de um único pico de amplitude total. Isso dá uma idéia da supressão de ruído aleatória. Parece que nenhuma amostra única causará mais de 2,5 mudanças na saída. O traço azul é dar uma sensação subjetiva do que este filtro faz com o ruído branco. Este não é um teste rigoroso, uma vez que não há garantia de que exatamente o conteúdo era dos números aleatórios escolhidos como entrada de ruído branco para esta corrida de PLOTFILT. É só dar-lhe uma sensação áspera de quanto ele será esmagado e quão suave é. PLOTFILT, talvez FILTBITS, e muitas outras coisas úteis, especialmente para o desenvolvimento de firmware PIC, estão disponíveis na versão do software PIC Development Tools na minha página de downloads de software. Adicionado sobre a precisão numérica que vejo a partir dos comentários e agora uma nova resposta que tem interesse em discutir o número de bits necessários para implementar este filtro. Observe que o Multiply by FF criará novos bits do Log 2 (FF) abaixo do ponto binário. Em sistemas pequenos, FF é geralmente escolhido para ser 12 N, de modo que esse multiplicação seja efetivamente realizado por uma mudança direta de N bits. FILT é, portanto, geralmente um inteiro de ponto fixo. Observe que isso não altera nenhuma das matemáticas do ponto de vista dos processadores. Por exemplo, se você estiver filtrando as leituras de AD de 10 bit e N 4 (FF 116), então você precisa de 4 bits de fração abaixo das leituras de AD inteiras de 10 bits. A maioria dos processadores, você estará fazendo operações inteiras de 16 bits devido às leituras AD de 10 bits. Nesse caso, você ainda pode fazer exatamente as mesmas operações de inteiro de 16 bits, mas comece com as leituras de AD esquerda deslocadas em 4 bits. O processador não conhece a diferença e não precisa. Fazer matemática em inteiros inteiros de 16 bits funciona se você considera que eles são 12.4 pontos fixos ou verdadeiros inteiros de 16 bits (16.0 ponto fixo). Em geral, você precisa adicionar N bits cada pólo de filtro se você não deseja adicionar ruído devido à representação numérica. No exemplo acima, o segundo filtro de dois teria que ter 1044 18 bits para não perder informações. Na prática, em uma máquina de 8 bits que significa que você use valores de 24 bits. Tecnicamente, apenas o segundo pólo de dois precisaria do valor mais amplo, mas, para a simplicidade do firmware, costumo usar a mesma representação e, desse modo, o mesmo código para todos os pólos de um filtro. Geralmente eu escrevo uma sub-rotina ou macro para executar uma operação de polio de filtro, depois aplique isso a cada pólo. Se uma sub-rotina ou macro depende se os ciclos ou a memória do programa são mais importantes nesse projeto específico. De qualquer forma, eu uso algum estado de rascunho para passar NOVO no subroutinemacro, que atualiza FILT, mas também carrega isso no mesmo estado de rascunho NOVO estava dentro. Isso facilita a aplicação de vários pólos desde que o FILT atualizado de um pólo é o NOVO Do próximo. Quando uma sub-rotina, é útil ter um ponteiro apontar para FILT no caminho, que é atualizado logo após FILT no caminho de saída. Dessa forma, a sub-rotina atua automaticamente em filtros consecutivos na memória se for chamado várias vezes. Com uma macro, você não precisa de um ponteiro, pois você passa no endereço para operar em cada iteração. Exemplos de código Aqui está um exemplo de uma macro como descrito acima para um PIC 18: E aqui está uma macro semelhante para um PIC 24 ou dsPIC 30 ou 33: Ambos esses exemplos são implementados como macros usando o meu pré-processador PIC assembler. Que é mais capaz do que qualquer uma das instalações de macro incorporadas. Clabacchio: Outro problema que eu deveria ter mencionado é a implementação do firmware. Você pode escrever uma sub-rotina de filtro passa-baixa de um único pó uma vez, e depois aplicá-la várias vezes. Na verdade, geralmente escrevo uma sub-rotina para levar um ponteiro na memória para o estado do filtro, então, avance o ponteiro para que possa ser chamado sucessivamente de forma fácil para realizar filtros multipolar. Ndash Olin Lathrop 20 de abril 12 às 15:03 1. Muito obrigado por suas respostas - todos eles. Eu decidi usar este Filtro IIR, mas este Filtro não é usado como um Filtro LowPass Padrão, pois eu preciso usar os Valores de Contador médios e compará-los para detectar Mudanças em um determinado intervalo. Uma vez que estes valores são de dimensões muito diferentes dependendo do hardware que eu queria tomar uma média para poder reagir automaticamente a essas mudanças específicas de hardware. Ndash sensslen 21 de maio 12 às 12:06 Se você pode viver com a restrição de um poder de dois itens a média (ou seja, 2,4,8,16,32 etc.), então a divisão pode ser feita com facilidade e eficiência em uma Micro de baixo desempenho sem divisão dedicada porque pode ser feito como uma mudança de bit. Cada turno para a direita é um poder de dois, por exemplo: O OP pensou que ele tinha dois problemas, dividindo-se em um PIC16 e memória para o buffer de anel. Esta resposta mostra que a divisão não é difícil. É certo que não aborda o problema da memória, mas o sistema SE permite respostas parciais, e os usuários podem tirar algo de cada resposta por si mesmos, ou mesmo editar e combinar as respostas de outros. Uma vez que algumas das outras respostas exigem uma operação de divisão, elas são igualmente incompletas, uma vez que não mostram como conseguir isso eficientemente em um PIC16. Ndash Martin 20 de abril 12 às 13:01 Há uma resposta para um verdadeiro filtro de média móvel (aka filtro de caixa de depósito) com menos requisitos de memória, se você não se importa com o downsampling. É chamado de filtro integrador-pente em cascata (CIC). A idéia é que você tenha um integrador que você tome diferenças em um período de tempo, e o dispositivo chave de economia de memória é que, por downsampling, você não precisa armazenar todos os valores do integrador. Ele pode ser implementado usando o seguinte pseudocódigo: seu comprimento médio móvel efetivo é decimationFactorstatesize, mas você só precisa manter em torno de amostras estadisticas. Obviamente, você pode obter um melhor desempenho se o seu estadista e decimationFactor forem poderes de 2, de modo que os operadores de divisão e restante sejam substituídos por turnos e máscaras-es. Postscript: Eu concordo com a Olin que você sempre deve considerar filtros IIR simples antes de um filtro de média móvel. Se você não precisar da freqüência-nulos de um filtro de caixa, um filtro passa-baixa de 1 pólo ou 2 pólos provavelmente funcionará bem. Por outro lado, se você estiver filtrando para fins de decimação (tomando uma entrada de alta taxa de amostragem e avaliando-a para uso por um processo de baixa taxa), um filtro CIC pode ser exatamente o que você está procurando. (Especialmente se você pode usar statesize1 e evitar o buffer de toque completamente com apenas um único valor de integrador anterior) Há uma análise aprofundada da matemática por trás do uso do filtro IIR de primeira ordem que Olin Lathrop já descreveu na troca de pilha de processamento de sinal digital (Inclui muitas imagens bonitas.) A equação para este filtro IIR é: Isto pode ser implementado usando apenas números inteiros e sem divisão usando o seguinte código (pode precisar de alguma depuração como eu estava digitando de memória.) Este filtro se aproxima de uma média móvel de As últimas K amostras, definindo o valor de alfa para 1K. Faça isso no código anterior, definindo BITS para LOG2 (K), ou seja, para K 16, defina BITS para 4, para K 4, defina BITS para 2, etc. (Verifique o código listado aqui assim que eu receber uma mudança e Edite esta resposta, se necessário.) Respondeu 23 de junho 12 às 4:04 Heres um filtro passa-baixa de um único polo (média móvel, com freqüência de corte CutoffFrequency). Muito simples, muito rápido, funciona muito bem e quase sem memória. Nota: Todas as variáveis ​​têm um alcance além da função de filtro, exceto o passado em newInput Note: Este é um filtro de estágio único. Múltiplos estágios podem ser conectados em cascata para aumentar a nitidez do filtro. Se você usar mais de um estágio, você precisará ajustar o DecayFactor (como se relaciona com a frequência de corte) para compensar. E, obviamente, tudo que você precisa é que as duas linhas colocadas em qualquer lugar, eles não precisam de sua própria função. Este filtro possui um tempo de aceleração antes que a média móvel represente a do sinal de entrada. Se você precisar ignorar esse tempo de aceleração, basta inicializar o MovingAverage para o primeiro valor do newInput em vez de 0 e espero que o primeiro NewInput não seja um outlier. (CutoffFrequencySampleRate) tem um intervalo entre 0 e 0,5. DecayFactor é um valor entre 0 e 1, geralmente perto de 1. Os flutuadores de precisão única são bons o suficiente para a maioria das coisas, eu apenas prefiro duplas. Se você precisa ficar com números inteiros, você pode converter DecayFactor e Factor de amplitude em inteiros fracionários, nos quais o numerador é armazenado como inteiro e o denominador é uma potência inteira de 2 (para que você possa mudar de bit para a direita como o Denominador em vez de ter que dividir durante o ciclo do filtro). Por exemplo, se DecayFactor 0.99 e você deseja usar números inteiros, você pode definir o DecayFactor 0.99 65536 64881. E então, sempre que você se multiplicar pelo DecayFactor no loop do filtro, basta mudar o resultado 16. Para obter mais informações sobre isso, um excelente livro é esse Online, capítulo 19 em filtros recursivos: dspguidech19.htm PS Para o paradigma da Média em Movimento, uma abordagem diferente para definir DecayFactor e AmplitudeFactor que pode ser mais relevante para suas necessidades, digamos que você quer o anterior, cerca de 6 itens em média juntos, fazendo isso discretamente, você adicionará 6 itens e dividirá por 6, então Você pode configurar o AmplitudeFactor para 16, e DecayFactor para (1.0 - AmplitudeFactor). Respondeu 12 de maio 12 às 22:55 Todos os outros comentaram detalhadamente sobre a utilidade do IIR vs. FIR e sobre a divisão de poder de dois. Eu gostaria de dar alguns detalhes de implementação. O abaixo funciona bem em pequenos microcontroladores sem FPU. Não há multiplicação, e se você mantém N um poder de dois, toda a divisão é de um único ciclo de mudança de bits. Tampão de anel FIR básico: mantenha um buffer de execução dos últimos valores de N e uma SOM em execução de todos os valores no buffer. Cada vez que uma nova amostra vem, subtrair o valor mais antigo no buffer de SUM, substituí-lo pela nova amostra, adicionar a nova amostra a SUM e SOMN de saída. Tampão de anel IIR modificado: mantenha uma SOM executória dos últimos valores de N. Cada vez que uma nova amostra vem, SUM - SUMN, adicione a nova amostra e saia SUMN. Respondeu 28 de agosto 13 às 13:45 Se eu tiver lido você direito, você descreve um filtro IIR de primeiro ordem, o valor que você está subtraindo não é o valor mais antigo que está caindo, mas sim a média dos valores anteriores. Os filtros IIR de primeiro orden certamente podem ser úteis, mas eu não tenho certeza do que você quer dizer quando você sugere que a saída seja a mesma para todos os sinais periódicos. A uma taxa de amostragem de 10KHz, a alimentação de uma onda quadrada de 100Hz em um filtro de caixa de 20 estágios produzirá um sinal que sobe uniformemente para 20 amostras, fica alto por 30, cai uniformemente para 20 amostras e fica com baixo para 30. Uma ordem de primeira ordem Filtro IIR. Ndash supercat 28 de agosto 13 às 15:31 renderá uma onda que começa a subir bruscamente e gradualmente se nivela perto (mas não em) o máximo de entrada, então começa a cair bruscamente e gradualmente nivela perto (mas não at) o mínimo de entrada. Comportamento muito diferente. Ndash supercat 28 de agosto 13 às 15:32 Uma questão é que uma média móvel simples pode ou não ser útil. Com um filtro IIR, você pode obter um bom filtro com relativamente poucos calcs. O FIR que você descreve só pode dar-lhe um retângulo no tempo - um sinc na freq - e você pode gerenciar os lobos laterais. Pode valer a pena lançar alguns números inteiros para tornar uma boa FIR sintonizada simétrica se você pode poupar os tiques do relógio. Ndash Scott Seidman 29 de agosto 13 às 13:50 ScottSeidman: Não há necessidade de se multiplicar se um simplesmente tiver cada estágio da FIR ou produzir a média da entrada para esse estágio e seu valor armazenado anterior, e depois armazenar a entrada (se tiver O intervalo numérico, pode-se usar a soma em vez da média). Se isso é melhor do que um filtro de caixa depende do aplicativo (a resposta de passo de um filtro de caixa com um atraso total de 1 ms, por exemplo, terá um pico d2dt desagradável quando a entrada muda, e novamente 1 ms depois, mas terá o mínimo Possível ddt para um filtro com um atraso total de 1ms). Ndash supercat 29 de agosto às 15:25 Como disse mikeselectricstuff, se você realmente precisa reduzir suas necessidades de memória e você não se importa que sua resposta de impulso seja exponencial (em vez de um pulso retangular), eu iria por um filtro exponencial de média móvel . Eu os uso extensivamente. Com esse tipo de filtro, você não precisa de nenhum buffer. Você não precisa armazenar N amostras passadas. Apenas um. Então, seus requisitos de memória são reduzidos por um fator de N. Além disso, você não precisa de nenhuma divisão para isso. Somente multiplicações. Se você tem acesso à aritmética de ponto flutuante, use as multiplicações de ponto flutuante. Caso contrário, faça multiplicações inteiras e mude para a direita. No entanto, estamos em 2012 e eu recomendaria que você usasse compiladores (e MCUs) que permitem que você trabalhe com números de ponto flutuante. Além de ser mais eficiente e mais eficiente em memória (você não precisa atualizar itens em qualquer buffer circular), eu diria que também é mais natural. Porque uma resposta exponencial de impulso corresponde melhor à maneira como a natureza se comporta, na maioria dos casos. Respondeu 20 de abril 12 às 9:59 Um problema com o filtro IIR como quase tocado por olin e supercat, mas aparentemente desconsiderado por outros é que o arredondamento apresenta alguma imprecisão (e potencialmente biastruncação). Assumindo que N é um poder de dois, e apenas uma aritmética inteira é usada, a direita de mudança elimina sistematicamente os LSBs da nova amostra. Isso significa que, quanto tempo a série possa ser, a média nunca levará em consideração essa série. Por exemplo, suponha uma série que diminua lentamente (8,8,8. 8,7,7,7. 7,6,6) e assume que a média é de fato 8 no início. A amostra do punho 7 trará a média para 7, independentemente da força do filtro. Apenas para uma amostra. A mesma história para 6, etc. Agora pense no contrário. A série sobe. A média permanecerá em 7 para sempre, até que a amostra seja grande o suficiente para fazê-la mudar. Claro, você pode corrigir o viés, adicionando 12N2, mas isso realmente não resolverá o problema de precisão. Nesse caso a série decrescente permanecerá para sempre em 8 até a amostra ser 8-12 (N2). Para N4, por exemplo, qualquer amostra acima de zero manterá a média inalterada. Eu acredito que uma solução para isso implicaria manter um acumulador de LSBs perdidos. Mas eu não consegui o suficiente para ter o código pronto, e não tenho certeza de que isso não prejudicaria o poder do IIR em alguns outros casos de séries (por exemplo, se 7,9,7,9 seria médio para 8). Olin, sua cascata de dois estágios também precisaria de alguma explicação. Você quer dizer segurar dois valores médios com o resultado do primeiro alimentado no segundo em cada iteração. Qual é o benefício desse algoritmo C para a média móvel exponencial de latência zero Última modificação: 2012-08-13 Tenho tentado implementar um corte de baixa freqüência em c que essencialmente leva um fluxo de números e suaviza a saída (filtragem de alta freqüência Movejitter), no entanto, é importante que os números ponderados da frente sejam considerados imediatamente, pois os dados são críticos no tempo (é controlar uma base de simulação de movimento usando o resultado de um pouco de software de jogo). Eu tenho um algoritmo de média móvel ponderada trabalhando, mas poderia fazer com algo um pouco mais responsivo no front-end, e eu achei isso: - O pseudo-código é o seguinte: Entradas: Preço (NumericSeries), Periodo (NumericSimple) Variáveis: Fator (0), lag (0) se CurrentBar lt 1 começar ZLEMA Fator de preço 2 (Período1) atraso (Período-1) 2 final, então, começar fator ZLEMA (2Preço-Pricelag) (1 fator) ZLEMA1 fim Ive traduziu-o em Para C e meu código é o seguinte: No entanto, ele não parece se comportar bem como espero. Parece estar quase lá, mas às vezes eu recebo um valor ligeiramente inferior ao de todos os itens na fila (quando eles são todos mais altos). Minha fila e o número de itens nele são passados ​​como parâmetros, sendo que o último é na frente em todos os momentos, também passo um contador incremental a partir de 0, conforme exigido pela função. Eu não tenho certeza de que interpretei o significado do ZLEMA1 corretamente, pois não está claro em seu pseudocódigo, então eu considerei que isso é o último zlema de chamadas e também suponho que o preço realmente significa Price0. Talvez eu tenha feito isso errado. Eu deveria estar copiando os valores calculados zlema reais de volta para minha fila original antes da próxima chamada, eu não mudo a fila original do que simplesmente deslocando todos os valores um para o final e inserindo o mais recente no início . O código que eu uso para fazer isso é: ficaria extremamente agradecido se alguém com uma melhor compreensão da matemática pudesse sanar a sanidade verifique isso para mim, para ver se eu tenho algo um pouco errado. Agradeço muito com antecedência, se você puder ajudar. Em primeiro lugar, agradeço tudo por Sua contribuição, muito apreciada. Isso faz sentido, acho que, então, suponho que o melhor que eu possa esperar é simplesmente uma média móvel exponencial, aceitando que haverá um pouco de atraso, mas isso será minimizado pela ponderação frontal mais pesada do que a dada em tipical ponderada Média móvel também tenho esse algoritmo, mas um problema semelhante na medida em que os valores não parecem bastante corretos (a menos que esta seja a natureza da fórmula). Por exemplo, diga que minha matriz contém 16 valores, tudo 0.4775 - a saída é 0.4983, mas espero que seja 0.4775 Isso parece diretamente para você. Média móvel exponencial. Float ema (float vals, int numVals, int currentSample) static float factor 0 static float lastema 0 float ema if (currentSample lt 1) ema vals0 factor 2.0 ((float) numVals) 1.0) else ema (factor vals0) ((1.0 - factor) lastema) lastema ema return ema Inversamente, as vezes a saída é menor que todas e cada uma das entradas, mesmo que todas sejam mais altas. É chamado da mesma maneira que zlema (.) Acima, com um contador de incremento. A fórmula e o pseudocódigo para este estão aqui: - autotradingstrategy. wordpress20091130exposential-moving-average Obrigado novamente, desculpas pelo meu mal-entendido de alguns dos princípios básicos :( Atenciosamente, Chris J Quanto ao código que postei, você está certo sobre o tamanho da matriz Situação. Isso deve ser facilmente corrigido. Quanto às suas perguntas: 1) A constante do filtro representa um corte de freqüência. Eu usei um Processamento de Sinal Digital (DSP) para esta técnica. En. wikipedia. orgwi kiLow-pas sfilter é uma explicação simples. Você quer a seção de Realização de Tempo Discreto. No meu caso, o A é o RC-Constant de que falam. Portanto, a freqüência que ele corta é acima de 1 (2piA). Se você não tem uma compreensão da teoria do domínio da frequência, isso pode se tornar complicado. No seu caso, quanto maior você fizer A, menor será a frequência que este filtro permitirá, o que significa que irá suavizar cada vez mais a curva. Quanto mais baixo você conseguir, mais ruído é permitido no sistema. Lembre-se de que A deve ser maior ou igual a 1 para ser eficaz. Voltei a colocar o XLS novamente, desta vez sem os números mut rand (). Ajuste a constante A e assista como quotsmoothsquot (ou filtra) as variações de alta freqüência. 2) O último ponto da matriz de entrada tem o valor mais recente. 3) O mesmo é verdadeiro para a matriz de saída. O último é o valor mais recente. 5) O NUMVALS é arbitrário. Você pode adicionar continuamente à matriz de entrada e saída, quantas vezes você quiser e não afetará o filtro. Em particular, usei 49 pontos. Mas eu posso excluir facilmente os últimos 20 e as primeiras 29 saídas permaneceriam as mesmas. A função não é baseada em quantos pontos estão sendo usados. Gostaria de mencionar que desenvolvi essa função para uma conversão única. Se você quisesse fazer uma conversão para o próximo valor, você poderia tentar algo mais simples (como anexado). Novamente estou enferrujado em c. Espero que isso esteja certo. A única coisa que você precisaria fornecer é a entrada e filtro constante. Avise-me se isso ajudar.

No comments:

Post a Comment